
An Intelligent Ground Vehicle Ontology for Multi-
Agent System Integration

Craig Schlenoff, National Institute of Standards and Technology, Gaithersburg, MD, craig.schlenoff@nist.gov

Randy Washington, DCS Corporation, Alexandria, VA, rwashington@dcscorp.com
Tony Barbera, National Institute of Standards and Technology, Gaithersburg, MD, tony.barbera@nist.gov

Abstract — The level of automation in ground combat
vehicles being developed for the Army’s objective force is
greatly increased over the Army’s legacy force. The
development of these intelligent ground vehicles (IGV)
requires a thorough understanding of all of the intelligent
behavior that needs to be exhibited by the system so that
designers can allocate functionality to humans and/or
machines. In this paper, we describe the joint effort
currently being performed by DCS Corporation and NIST to
develop an intelligent ground vehicle (IGV) ontology using
Protégé. The goal of this effort is to develop a common,
implementation-independent, extendable knowledge source
for researchers and developers in the intelligent vehicle
community. This paper describes the methodology we have
used to identify knowledge in this domain and an approach
to capture and visualize the knowledge in the ontology.

1. INTRODUCTION
The level of automation in ground combat vehicles being
developed for the Army’s objective force is greatly
increased over the Army’s legacy force. This automation is
taking many forms in emerging ground vehicles; varying
from operator decision aides to fully autonomous unmanned
systems. The development of these intelligent ground
vehicles (IGV) requires a thorough understanding of all of
the intelligent behavior that needs to be exhibited by the
system so that designers can allocate functionality to
humans and/or machines. Tradition system specification
techniques focused heavily on the functional description of
the major systems of a vehicle and implicitly assumed that a
well-trained crew would operate these systems in a manner
to accomplish the tactical mission assigned to the vehicle.
In order to allocate some or all of these intelligent behaviors
to machines in future ground vehicles, it is necessary to be
able to identify and describe these intelligent behaviors.

The U.S. Army Tank Automotive Research, Development
and Engineering Center (TARDEC) has funded DCS
Corporation and the National Institute of Standards and
Technology (NIST) to explore approaches to model the
ground vehicle domain with explicit representation of
intelligent behavior. This exploration has included the
analysis of modeling languages (i.e., UML, DAML, OWL)
as well as reference architectures. A major component of
this effort has been the development of an IGV Ontology.

NIST and DCS Corporation have taken the view that an
IGV can be viewed as a multi-agent system, where agents
can represent components within the vehicle (e.g., a
propulsion system, a lethality system, etc). In addition, an
IGV, as a whole, can serve as a single agent within a troop,
platoon, or section, where multiple IGVs are present. In
order for a group of agents to work together to accomplish a
common goal, they must be able to clearly and
unambiguously communicate with each other without the
fear of loss of information or misinterpretation. We have
used the IGV Ontology to specify a common lexicon and
semantics to address this challenge.

In this paper, we describe the joint effort currently being
performed by DCS Corporation and NIST to develop an
intelligent ground vehicle (IGV) ontology using Protégé.
The goal of this effort is to develop a common,
implementation-independent, extendable knowledge source
for researchers and developers in the intelligent vehicle
community that will:

• Provide a standard set of domain concepts along with

their attributes and inter-relations;
• Allow for knowledge capture and reuse;
• Facilitate systems specification, design, and integration,

and;
• Accelerate research in the field.

This paper describes the methodology we have used to
identify knowledge in this domain and an approach we have
used to capture and visualize the knowledge in an ontology.
Section 2 describes the Real-time Control System (RCS)
and its underlying methodology that we use to determine the
information requirements to model in the ontology. Section
3 describes the IGV Ontology. Section 4 describes our
current status. Section 5 concludes the paper.

2. THE REAL-TIME CONTROL SYSTEM (RCS)

2.1. The Methodology

One of the first steps in any ontology development effort is
to identify the information requirements that are necessary
to be modeled in the ontology. For this effort, we used the
RCS (Real-time Control System) methodology for
determine these requirements.

RCS was developed by NIST for the control of intelligent
systems, and has recently been used to control intelligent

drussell
Proceedings of the 2005 Knowledge Intensive Multi-Agent Systems (KIMAS) Conference, Waltham, MA, April 18-21, 2005.

vehicles within military environment [1]. The RCS
methodology concentrates on the task decomposition as the
primary means of understanding the knowledge required for
intelligent control. This approach is shown in Figure 1 and
begins with the knowledge “mining” activities to retrieve
knowledge from subject matter experts (SMEs). The
gathering and formatting of this knowledge can be
summarized in six steps, each of which follows from the
knowledge uncovered by the previous steps:

1) The first step involves an intensive analysis of
domain knowledge from manuals and subject
matter experts (SMEs), especially using scenarios
of particular subtask operations. The output of the
effort is a structuring of this knowledge into a task
decision tree form of simpler and simpler
commands (actions/verbs) at simpler and simpler
levels of task description.

2) This step defines the hierarchical organization of
agent control modules that will execute these layers
of commands in such a manner as to reasonably
accomplish the tasks. This is the same as coming
up with a business or military organizational
structure of agent control modules (people,
soldiers) to accomplish the desired tasks. This step
forces a more formal structuring of all of the

subtask activities as well as defining the execution
structure.

3) This step clarifies the processing of each agent’s
input command through the use of rules to identify
all of the task branching conditions with their
corresponding output commands. Each of these
command decompositions at each agent control
module will be represented in the form of a state-
table of ordered production rules (which is an
implementation of an extended finite state machine
(FSM)). The sequence of simpler output
commands required to accomplish the input
command and the named situations (branching
conditions) that transition the state-table to the next
output command are the primary knowledge
represented in this step.

4) In this step, the above named situations that are the
task branching conditions are defined in great
detail in terms of their dependencies on world and
task states. This step attempts to define the
detailed precursor states of the world that cause a
particular situation to be true.

5) In this step, we identify and name all of the objects
and entities together with their particular features
and attributes that are relevant to defining the
above world states and situations.

Figure 1 - RCS Methodology

DOT Driving Manuals
and

ARMY Field Manuals

+

Domain Experts

Task Decomposition Tree
(Route Reconnaissance Example)

Hierarchical Organization of
Agent Control Modules

BEHAVIOR
GENERATION

WORLD MODEL
KNOWLEDGE

SENSORY
PROCESSING

SituationsWorld StatesObjects & Attributes
ColorCameras LADAR

Radar Stereo FLIR Nav

Segmented Groupings

Features and Attributes
Objects and Maps

Object Groupings and
Classifications

Cattails

ConductRoadMarchToAnAssemblyArea(AA)

Conduct
RouteRecon

PrepareFor
RoadMarch

FollowPlatoon
ToAssemblyArea

Secure
AssemblyArea

Organize
AssemblyArea

Conduct
MainRoute

Recon

DeployTo
StartPoint

Conduct
LeftFlank
RouteRecon

Locate&Secure
ObstacleBypass

Conduct
Obstacle
Recon

Conduct
RightFlank

RouteRecon

MoveInto
MarchFormation

PrepareDetailed
MovementPlans

MoveTo
ControlPoint

Conduct
DominateTerrain
Recon

MoveTo
Cover/Concealed

Position

Ford
Water
Obstacle

Secure
Area

Overwatch
Section

Perform
Ford
Recon

Locate
WaterBypass

MoveTo
ControlPoint

Assess
FordTerrain

MoveTo
Position

Scan
Path

Cross
Ford

ScanArea
ForEnemy

MoveTo
Water

ShiftTo
4WhLo

MoveTo
Opposite
Bank

ShiftTo
4WhHi

Dry
Brakes

SENSORY
PROCESSING

KNOWLEDGE
DATABASE

BEHAVIOR
GENERATION

WORLD
MODEL

VALUE
JUDGMENT

(Executing)

(ReconToRoute)(Executing)
SENSORY

INPUT

(Platoon “B” Section
 Agent Control

Module)

Select
“ConductWaterObsRecon”

Plan State-Table

(ConductRightFlankRecon)

Scout
Platoon

1st

Cavalry
Troop

Command
Group
(FSO)

Quarter
Party

Scout
Platoon

3rd

Cond uctRoad MarchToAssem blyArea

Condu ctRo uteRecon
Secu reAssemblyAreaCond uctAreaRecon

OrganizeAssemb lyArea

FollowPlatoo nToAssem blyAreaPrepareFo rRoadMarch
MoveIntoFo rmatio n
ExecuteRoadMarch
ExecuteHalt
Occup yAssemblyArea

PrepareForRoad March
MoveIn toFo rmation
ExecuteR oad March
ExecuteH alt
OccupyAssemb lyArea

Section
C

CommsSurveil-
lance

Gaze
Control

Lethality
(Gunner)Mobility

Weapon
Control

Target
Sensors

Pan/Tilt
Control

FLIR,
LADAR
Camera

CrossFord
MoveT oPosition

ScanPath

MoveT oWater
Shi ftTo4Wh eelLo
MoveT oOppo siteBank
Shi ftTo4Wh eelHi
DryBrakes

AssessFo rdTerrain ScanAreaFo rEnemy

Section
A

Veh
#2

Dep loyToStartPoint
Cond uctL eftF lan kReco n
Locate&SecureObstacleBypass
Mo veToControlPoint

LocateWaterBypass
PerformFo rdReco n
Ford WaterObstacle
SecureArea
Overwatch Section

Section
B

D eployToStartPoin t
C onductRightF lankReco n
C onductDominan tTerrainRecon
C onductAmbu shSi teReco n
Mo veToCo ntrolPoin t

SendReport

 NormalRouteReconSituation ConductRightFlankRecon

 ConductWaterObstacleRecon WaterObstacleDetected

 AssessMinefieldRecon MinefieldDetected

 DefileDetected ConductDefileRecon

 LateralRouteDetected ConductLateralRouteRecon

Selection Conditions Selected Plan

PLAN SELECTION TABLE

PLAN STATE-TABLE
Input Conditions Output Commands

 S1 Veh5_NoBypassOnRouteSide
 S2 SetupReport&NewControlMeasures
 Veh5_ReconToFarFlank
 Veh6_ConductTravelingOverwatch
 Veh8_VisuallyClearObstacle-FarSide

 NewPlan
 S1 SetupControlMeasures
 Veh5_ReconToRouteFlank
 Veh6_ConductTravelingOverwatch
 Veh8_VisuallyClearObstacle-FarSide

 ConductWaterObstacleRecon

 S2 Veh5_NoBypassOnFlank
 S0 SetupReport&NewControlMeasures
 Veh5_MoveTacticallyToControlPoint
 Veh6_ConductTravelingOverwatch
 Veh8_MoveTacticallyToControlPoint

 S1 Veh5_PossibleFordDetected
 S4 SetupReport&NewControlMeasures
 Veh5_ConductFordRecon
 Veh6_ConductNearSideOverwatch
 Veh8_VisuallyClearObstacle-FarSide

 S1 Veh5_LateralBypassFound
 S7 SetupReport&ControlMeasures
 Veh5_ConductObstacleFarSideRecon
 Veh6_ConductTravelingOverwatch
 Veh8_VisuallyClearToRoute

 S4 Veh5_FordNotPassable
 S1 SetupControlMeasures
 Veh5_ReconToRouteFlank
 Veh6_ConductTravelingOverwatch
 Veh8_VisuallyClearObstacle-FarSide

 S4 Veh5_FordLooksPassable
 S5 SetupReport&NewControlMeasures
 Veh5_MoveToCover/ConcealPosition
 Veh6_ConductNearSideOverwatch
 Veh8_VisuallyClearObstacle-FarSide

ConductRightFlankRecon

BEHAVIOR
GENERATION

STATUS

STATUS

NEXT
SUBGOAL

.
COMMANDED
TASK (GOAL)

D ri veOnTw oLaneR d

Pass VehI nFront

P assVehI nFron t

Driv eOnT woLan eRd

Neg ot iateLaneC onst r ict

PassV ehIn Fr ont . STATE-TABLES

WaterDepthToSixFeet

WaterCoveredLand

MajorGroundDeformation

TractionSlip

LegalToPassMarshDetected
SomeWaterVisible

Mosses,Evergreens,andShrubs

StagnantWater

IndeterminantGroundLevel

SignificantTractionSlip

OrganicMaterialOnWaterSurface

BogDetected

ErodedEarthEmbankments

FlowingWater

NonVegetatedWaterInMiddle
NarrowWidth,IndeterminantLength

StreamDetected

ErodedEarthEmbankments

FlowingWater

NonVegetatedWaterInMiddle
SignificantWidth,IndeterminantLength

RiverDetected

WaterSheenOnGroundSurface

LittleToNoVegetation
SignificantTractionSlip

RuttedWithStandingWater

MudDetected

SignificantGroundDeformation

ExtensiveMarshVegetation

LongLeafGrasses - very flat, long green
 leaves-purple/rose/yellow flowers.

Reeds - tall, woody, thin, round, hollow
 jointed (tan-to-green) stem plants,
 long narrow green blade leaves,

Sedges - triangular tan/green stem plants,
 papyrus, narrow green to tan grass-
 like leaves, spikelets of inconspicuous
 tan-to-yellow-to-white flowers.

Water Lilies - very large floating green
 leaves with white flowers.

Saturated
Ground

Six Feet
of Water

Plant
Height

6-18"

6-48"

1-6'

Float

LargeSurfaceAreaOfStillWater

LargeAreaWithoutGrasses,Trees,Shrubs
OrganicMaterialMayBeOnWaterSurface Pond/LakeDetected
BoundedBySwamp,Marsh

MostlyTrees,SomeBushes

SlowMovingWaterCoveredLand
SignificantTractionSlip

ExtensiveWaterSurfaceVisible
SwampDetected

MajorGroundDeformation

WaterObstacleDetected

15 cm

2.4 cm .9 to 2.7m

3 cm

Veh
#3

Veh
#7

Veh
#5

Veh
#6

Veh
#8

Veh
#4

Veh
#9

Veh
#10

Propul-
sion

 large feathery panicles (elongated
 clusters of tan/white/purple flowers
 along main stem).

3-9' Bulrushes - tall tan-to-green stems, with
 dark brown cylindrical seed heads
 that explode into white down, long
 flat green sword shaped leaves,
 cattails.

TASK ANALYSIS
to Create Task

Decomposition Tree

MAP to AGENT
ARCHITECTURE

MAP TASK DECISIONS
to STATE-TABLES

STEP 1
STEP 2

STEP 3

STEP 4

DETERMINE ANTECEDENT
WORLD STATES

IDENTIFY OBJECTS and
THEIR RELEVANT ATTRIBUTES

STEP 5

STEP 6

DETERMINE SENSOR
PROCESSING REQUIREMENTS

AND RESOLUTIONS

6) The last step is to use the context of the particular
task activities to establish the distances and,
therefore, the resolutions at which the above
objects and entities must be measured and
recognized by the sensory processing component.
This step establishes a set of requirements and/or
specifications for the sensor system at the level of
each separate subtask activity.

More details about this methodology can be found in [2].

The outputs of this methodology are a set of information
requirements, specifically, information about tasks (step 1),
agents (step 2), plans to accomplish tasks (step 3),
conditions and situations (step 4), environmental entities
(step 5), and attributes of those entities (step 6). These
information requirements serve as the input for the ontology
described in the Section 3.

2.2. The Scenario

This effort uses knowledge derived from the task analysis of
scenarios of a light cavalry troop’s execution of a Conduct
Tactical Road March to Assembly Area mission,
independent if the activity is performed by man or machine.
In particular, we have analyzed the part of this mission that
focuses on the route reconnaissance component by the Scout
Platoon. This is done through scenarios that are examined
at more and more detailed levels starting at the Troop
Commander Level, which will perform a number of
planning activities to better identify the priority information
items of the route, to define the march column organization,
and to specify the formation and movement technique. The
Troop Commander will then dispatch a scout platoon to
conduct a route reconnaissance. The scout platoon leader
will do finer level planning, organizing the platoon’s
sections of vehicles and assigning commands to each
section leader to do reconnaissance of different areas along
the route while maintaining security. Each section leader
will evaluate the environment to provide detailed tactical
goal paths for each of his vehicles, coordinating their
movement by the use of detailed motion commands to
control points along with security overwatch commands.
Each vehicle, in turn, performs detailed sensory processing
to carry out careful analysis of the terrain in context of the
mission, security, stealth, and traversability. Each vehicle
then decides its optimal real-time path. If some aspect, such
as a water obstacle, constrains the vehicle from following
the general goal path laid out by the section leader, the
vehicle does reconnaissance, moves to a secure point, and
reports to the section leader. If the constraint affects the
operation of the entire section (e.g. the water obstacle
stretches across the entire area that the section is assigned),
then the section leader coordinates his vehicles to do
reconnaissance and to take up secure positions. The section
leader then reports to the platoon leader.

These scenarios provide a rich set of knowledge of
organizational structure, activities, commands, rules, status,

sensory processing, objects and world states to be
recognized, adaptation to events, and procedures required
for successful execution.

2.3. Extracting Information Requirements

Although the RCS approach uses state tables to represent
the information, the representation within the ontology does
not necessarily need to be captured within state tables as
long as no information is lost. Table 1 shows a small piece
of a state table representation that was developed from the
RCS methodology for the scenario described above. The
left column shows the condition that must be true for an
action to occur. The notation S# notates a state value. For
example, in the first line, the system must be in state 4 and
the condition “Scout Platoon Ready to Conduct Route
Recon” must be true for the action “Scout Platoon Conduct
Route Reconnaissance” to occur. When the action is
executing, the system will change over to state 5 (S5).

Table 1 - Excerpt from a RCS State Table
Conduct Tactical Road March To Assembly Area

Condition Action
… …
S4 Scout Platoon Ready to
Conduct Route Recon

S5 Scout Platoon Conduct
Route Reconnaissance

S5 Quartering Party Ready
to Organize Assembly Area

S6 Quartering Party Follow
Recon Platoon to Assembly
Area

S6 Quartering Party Clear of
Start Point

S7 Main Body and Trail Party
Prepare for Road March

S7 Main Body and Trail
Party Recon to Start Point
Done

S8 Troop Prepare Detailed
Movement Plans

S8 Scout Platoon Route
Recon Done

S9 Scout Platoon Establish
Assembly Area Security

S9 Quartering Party at
Release Point

S10 Quartering Party Conduct
Area Recon of Assembly Area

S10 Quartering Party Area
Recon of Assembly Area
Done

S11 Quartering Party Organize
Assembly Area

S11 Quartering Party Status
Assembly Area Suitable

S12 First Main Body Unit
Move Into Road March
Formation

S12 Main Body Unit At Start
Point

S12 Main Body Unit Execute
Tactical Road March
Next Main Body Unit Move
Into Road March Formation

S12 Last Main Body Unit at
Start Point

S13 Main Body Unit Execute
Tactical Road March
Trailing Party Move Into Road
March Formation

… …

3. THE IGV ONTOLOGY
3.1. Ontology Language

We decided to use the OWL-S upper ontology [8] as the
underlying representation for the IGV Ontology in order,
among other reasons, to document RCS in a more open
XML (eXtensible Markup Language) format. OWL-S is a

service ontology, which supplies a core set of markup
language constructs for describing the properties and
capabilities of services in an unambiguous, computer-
intepretable format. OWL-S, which is being developed by
the Semantic Web Services arm of the DARPA Agent
Markup Language (DAML) program, is based on the OWL
[5]. OWL is an extension to XML and RDF (Resource
Description Framework) schema that defines terms
commonly used in creating a model of an object or process.
OWL is a World Wide Wide Consortium (W3C)
recommendation, which is analogous to an international
standard in other standards bodies.

OWL-S is structured to provide three types of knowledge
about a service (Figure 2), each characterized by the
question it answers:

• What does the service require of the user(s), or other

agents, and provide for them? The answer to this
question is given in the ``profile.'' Thus, the class
SERVICE presents a SERVICEPROFILE

• How does it work? The answer to this question is given
in the ``model.'' Thus, the class SERVICE is
describedBy a SERVICEMODEL

• How is it used? The answer to this question is given in
the ``grounding.'' Thus, the class SERVICE supports a
SERVICEGROUNDING.

Later in this paper, we will show how we use these OWL-S
concepts to model a tactical behavior for an intelligent
ground vehicle.

3.2. Tools

Before the ontology can be built, a decision was made as to
which tool (or set of tools) should be used to enter, capture,
and visualize the ontology. For this work, we decided to use
Protégé [7]. Protégé is an ontology editor, a knowledge-base
editor, as well as an open-source, Java tool that provides an
extensible architecture for the creation of customized
knowledge-based applications. Protégé was chosen due to
its strong user community, its ability to support the OWL
language (discussed below), its ease of use (as determined
by previous experience), and its ability to be extended with
plug-ins such as visualization tools (also discussed below).

3.3. Using OWL-S To Model the Scenario

Both the RCS methodology and the OWL-S upper ontology
are based on the concept of agents, service that the agents
can perform, and procedures that the agents follow to
perform the services. As such, there is a very clean mapping
between the information that comes out of the RCS
methodology and the OWL-S upper ontology. In this
section, we will describe that mapping.

The first step involved setting up the agent hierarchy. In the
domain we are dealing with (a light Cavalry troop), we
designed an agent hierarchy as shown in Figure 3. A
detailed description of this hierarchy is outside the scope of
this paper. In OWL-S, we modeled all of these agents as
subclasses of the IGVAgent class, which is a subclass of the
ServiceResource class defined in the OWL-S upper
ontology. We also specified in the constraints for each class
who each agent can send external service requests to and
who they can received them from.

The next step involved setting up the services and processes.
Any activity that can be called by another agent is
considered a service in OWL-S. Any activity that the agent
performs internally that cannot be externally called is called
a process. As such, we model “Conduct A Tactical Road
March to an Assembly Area” as a service that is provided by
a Troop agent (and can be called by a Squadron agent). The
Troop agent can call services provided by other agents, such
as shown by the first action in Table 1 (Scout Platoon
Conduct Route Reconnaissance). In this example, we
defined a service called “Conduct Route Reconnaissance”
and associated that service with the Scout Platoon agent.

The state table in Table 1 shows an excerpt of the process
that an agent (in this case, the Troop agent) should follow
when executing the “Conduct a Tactical Road March to
Assembly Area” service. This process is captured in OWL-S
as a process model (as described in Section 3.1). The
process model includes the steps that must be accomplished
to carry out the service, and the ordering constraints on

Figure 2 - OWL-S Ontology Structure

Figure 3 - Agent Hierarchy

Service
Troop

Commander
Agent

Service
Platoon
Leader
Agent

Service
Section
Lead
Agent

Service
Vehicle

Commander
Agent

Service
Mobility
System
Agent

Service
Propulsion
Subsystem

Agent

Service
Platoon
Leader
Agent

Service
Platoon
Leader
Agent

Service
Section
Lead
Agent

Service
Section
Lead
Agent

Service
Vehicle

Commander
Agent

Service
Vehicle

Commander
Agent

Service
Survivability

System
Agent

Service
Surveillance

System
Agent

Service
Localization
Subsystem

Agent
Service

Auxiliary
Subsystem

Agent

Engine
Component

External Service Request by a process

Service
Lethality
System
Agent

Service
Automotive
Subsystem

Agent

Service
Support
System
Agent

Service
Navigation
Subsystem

Agent

A Vehicle manned by a Section
leader would contain each

Of these elements

Service
Engine

Controller
Agent

Service
Steer

Controller
Agent

Service
Trans fer/XFer

Controller
Agent

Service
ParkBrake
Controller

Agent
Service

Speed
Controller

Agent

Service
Troop

Commander
Agent

Service
Troop

Commander
Agent

Service
Platoon
Leader
Agent

Service
Platoon
Leader
Agent

Service
Section
Lead
Agent

Service
Section
Lead
Agent

Service
Vehicle

Commander
Agent

Service
Vehicle

Commander
Agent

Service
Mobility
System
Agent

Service
Mobility
System
Agent

Service
Propulsion
Subsystem

Agent
Service

Propulsion
Subsystem

Agent

Service
Platoon
Leader
Agent

Service
Platoon
Leader
Agent

Service
Platoon
Leader
Agent

Service
Platoon
Leader
Agent

Service
Section
Lead
Agent

Service
Section
Lead
Agent

Service
Section
Lead
Agent

Service
Section
Lead
Agent

Service
Vehicle

Commander
Agent

Service
Vehicle

Commander
Agent

Service
Vehicle

Commander
Agent

Service
Vehicle

Commander
Agent

Service
Survivability

System
Agent

Service
Survivability

System
Agent

Service
Surveillance

System
Agent

Service
Surveillance

System
Agent

Service
Localization
Subsystem

Agent
Service

Localization
Subsystem

Agent
Service

Auxiliary
Subsystem

Agent
Service

Auxiliary
Subsystem

Agent

Engine
Component

External Service Request by a process

Service
Lethality
System
Agent

Service
Lethality
System
Agent

Service
Automotive
Subsystem

Agent
Service

Automotive
Subsystem

Agent

Service
Support
System
Agent

Service
Support
System
Agent

Service
Navigation
Subsystem

Agent
Service

Navigation
Subsystem

Agent

A Vehicle manned by a Section
leader would contain each

Of these elements

A Vehicle manned by a Section
leader would contain each

Of these elements

Service
Engine

Controller
Agent

Service
Engine

Controller
Agent

Service
Steer

Controller
Agent

Service
Steer

Controller
Agent

Service
Trans fer/XFer

Controller
Agent

Service
Trans fer/XFer

Controller
Agent

Service
ParkBrake
Controller

Agent
Service

ParkBrake
Controller

Agent
Service

Speed
Controller

Agent
Service

Speed
Controller

Agent

those steps. Each step can be performed internally by the
agent or could involve making an external service request (a
service call) to another agent. The ordering of the steps in
Table 1 is shown using the next possible state indications
(S#). For example, the second to last action in Table 1 reads
“S12 Main Body Unit Execute Tactical Road March, Next
Main Body Unit Move Into Road March Formation.” The
S12 indicates what the next possible state could be after this
action is executed. On the left side of the table, there are two
states that start with S12 (Main Body Unit At Start Point
and Last Main Body Unit at Start Point). One of these
conditions has to be true after the “S12 Main Body Unit
Execute Tactical Road March” action completes executing.
If the last main body unit is at the start point, then the latter
state will be true. If not, then the former state will be true.
This continues until the latter state is true and the state table
moves to the next state (S13). One can model this as a
repeat-until sequence (the loop continues until the last main
body until is at the start point). OWL-S provides a number
of control constructs that allow you to model just about any
type of process flow imaginable. We have found that the
control constructs provided in OWL-S have been sufficient
to model all of the behaviors we explored.

Not shown in Table 1 but explained in Section 2, conditions
are a primary information output of the RCS methodology
(Step 4). The series of conditions shown in Figure 1 explain
how a given state in the state table is determined to be true.
OWL-S 1.0 provides a stub for conditions, but does not
elaborate on how they are constructed. As such, we have
developed our own mechanism for representing conditions
based, in part, upon Xquery and Xpath [3]. A description of
the constructs used to capture the conditions is outside of
the scope of this paper. OWL-S 1.1 (released in October,
2004) allows mechanisms to use external languages (e.g.,
Semantic Web Rules Languages (SWRL) [6], and others) to
specify conditions. Future work will migrate the current
condition approach to these external languages specification
recommended in OWL-S 1.1.

Also not shown in Table 1 but explained in Section 2,
environmental entities and their attributes are another
primary output of the RCS methodology. These include
other vehicles, bridges, vegetation, roads, water bodies;
anything that is important to perceive in the environment

relative to task that is being performed. We have started to
build an environment ontology in OWL-S from the bottom
up (i.e., including only entities that prove to be important
based on the output of the RCS methodology). However we
are currently starting to explore existing environment
ontologies that currently exist to see what we can leverage.

3.4. Organizing the Knowledge

Due to the sheer size of the ontology, we have taken the
approach of organizing the knowledge into namespaces. A
namespace is a tag prefixed to the name of the class or
instance that separates the knowledge in the ontology into
“pieces,” where each piece represents a group of like
concepts. Numerous namespaces can be imported into a
single ontology and a single namespace can be reused in
multiple ontologies. The contents of namespaces are often
stored in a separate files.

For this effort we have identified a set of five high-level
namespaces that build off of the concepts presented in
OWL-S (shown in Figure 4), namely:

• Basic – data structures to capture abstract, highly

reusable concepts (e.g., location, spatial relations)
• Behavior – data structures which help to describe

services, agents, and conditions (e.g., and-conditions,
or-conditions, external service requests)

• Military Concepts – data structures to capture common
concepts within military procedures (e.g., assembly
area, control points, troops)

• Environment – data structures to capture environmental
concepts (e.g, water bodies, shrubs, weather conditions)

• Military Equipment – data structures to capture
information about the equipment that the military uses
(e.g., communication devices, weapons, measuring
devices)

In addition, we have adopted the approach that we would
define a separate namespace for every agents’ services and
processes in every tactical behavior. For example, in the
“Conduct a Tactical Road March to an Assembly Area”

Figure 4 – Namespaces

Figure 5 - OWL-S Visualization Tool

 www.dcscorp.com/igv/
basic.owl

www.dcscorp.com/igv/
behavior.owl

http://www.daml.org/
services/owl-s/1.0/

service.owl

www.dcscorp.com/igv
militaryequipment.owl

www.dcscorp.com/igv/
militaryconcepts,owl

www.dcscorp.com/igv/
environment.owl

www.dcscorp.com/igv/
trpldr_c2v.owl

www.dcscorp.com/igv/
TrpLdr_TRM_c2v.owlwww.dcscorp.com/igv/

TrpLdr_TRM_c2v.owlwww.dcscorp.com/igv/
trpldr_trm.owl

www.dcscorp.com/igv/
TrpLdr_TRM_c2v.owlwww.dcscorp.com/igv/

TrpLdr_TRM_c2v.owlwww.dcscorp.com/igv/
pltldr_mgv.owl

Model of a Troop Leader Intelligent Vehicle

www.dcscorp.com/igv/
bncdr_c2v.owl

www.dcscorp.com/igv/
basic.owl

www.dcscorp.com/igv/
behavior.owl

http://www.daml.org/
services/owl-s/1.0/

service.owl

www.dcscorp.com/igv
militaryequipment.owl

www.dcscorp.com/igv/
militaryconcepts,owl

www.dcscorp.com/igv/
environment.owl

www.dcscorp.com/igv/
trpldr_c2v.owl

www.dcscorp.com/igv/
TrpLdr_TRM_c2v.owlwww.dcscorp.com/igv/

TrpLdr_TRM_c2v.owlwww.dcscorp.com/igv/
trpldr_trm.owl

www.dcscorp.com/igv/
TrpLdr_TRM_c2v.owlwww.dcscorp.com/igv/

TrpLdr_TRM_c2v.owlwww.dcscorp.com/igv/
trpldr_trm.owl

www.dcscorp.com/igv/
TrpLdr_TRM_c2v.owlwww.dcscorp.com/igv/

TrpLdr_TRM_c2v.owlwww.dcscorp.com/igv/
pltldr_mgv.owl

www.dcscorp.com/igv/
TrpLdr_TRM_c2v.owlwww.dcscorp.com/igv/

TrpLdr_TRM_c2v.owlwww.dcscorp.com/igv/
pltldr_mgv.owl

Model of a Troop Leader Intelligent Vehicle

www.dcscorp.com/igv/
bncdr_c2v.owl

tactical behavior, we have defined the services and
corresponding process models for most of the agents shown
in Figure 3. As such, we would have a namespace call
Troop-ConductTacticalRoadMarchToAA, Platoon-
ConductTacticalRoadMarchToAA, etc.

3.5. Visualization of the Ontology

While presenting this work to our funding sponsors, it
quickly became obvious that we needed a better way to
display the information in the ontology. A whole bunch of
windows with a small amount of text in each didn’t work
well. As mentioned earlier, one of the reasons we chose
Protégé was its ability to be extended using “plug-ins.” A
plug-in is a piece of code that performs a given functionality
that can be incorporated into Protégé. We developed a
visualization tool based upon the open source GraphViz
program [4] that allows us to graph OWL-S models. A
snapshot of the visualization tool, shown in Figure 5, shows
process flow (dark arrows) and data flow (light arrows).

4. CURRENT STATUS
To date, service models have been developed for the
following agents: troop, platoon, section, vehicles, mobility,
propulsion, engine controller, engine, surveillance, and
sensor subsystem (as shown in Figure 3). All of the service
models are currently focused solely on the scenario
described in Section 2.2. We have only done one strand of
this scenario (e.g., we elaborated one service in each level of
the hierarchy, although there were almost always many
services that each agent may have to perform to accomplish
the overall goal of “Conducting a Tactical Road March to
An Assembly Area.”) Also, this one scenario represents one
of hundreds, if not thousands, of tactical behaviors that an
army soldier is expected to be able to perform. It is clear
that, as the details of this scenario is further modeled and
more scenarios are explored, the size of the ontology will
grow to be very large. At the time when this document was
written, we have modeled 489 classes, 213 properties
(attributes), and 2674 instances.

5. CONCLUSION
In this paper, we describe an ongoing effort to develop an
IGV Ontology for the purpose of capturing knowledge
about tactical behaviors to facilitate intelligent ground
vehicle development and execution. The ontology is being
built using the Protégé environment and is based upon the
OWL-S upper ontology.

Through the development of this ontology, it has become
apparent that the applications of a neutral and well-defined
representation and tactical behaviors is far-reaching above
and beyond that of controlling autonomous vehicles. Some
of the potential communities that have been identified
include:
• Material Acquisition Community: Documenting

behavioral requirements for manned, aided, and
unmanned systems; and analyzing the

completeness/consistency of requirements and
predicting the performance of systems developed to
meet those requirements.

• Vendor Community: Unambiguously interpreting
behavioral requirements; and rapid development of
simulation/prototypes to evaluate design alternatives.

• Training Community: Availability of machine-readable
sources of tactical knowledge for automatic generation
of training materials and training scenarios

Initial results of this effort have shown that:
• Ontologies appear to be an excellent approach for

capture information in a computer-interpretable format
about tactical behaviors

• The RCS methodology has provided information
requirements to the ontology at a level of detail that
greatly facilitates the ontology development process. A
large part of building any type of ontology is extracting
the information requirements that must be represented.
The RCS methodology directly addresses this need.

• OWL-S provide a very nice mapping to the RCS
methodology and serves as an excellent upper ontology
to represent tactical behaviors

ACKNOWLEDGMENT

This work was sponsored by U.S. Army Tank Automotive
Research, Development and Engineering Center
(TARDEC).

REFERENCES

 1. Albus, J., "4-D/RCS: A Reference Model

Architecture for Demo III," NISTIR 5994,
Gaithersburg, MD, 1997.

 2. Barbera, T., et. al., "Software Engineering for
Intelligent Control Systems," Kunstliche Intelligenz
Journal: Special Issue on Software Engineering for
Knowledge-based Systems, Vol. 3, No. 4, 2004.

 3. Boag, S., et. al., "XQuery 1.0: An XML Query
Language," W3C Web page:
http://www.w3.org/TR/xquery/, 2004.

 4. Gansner, E. and North, S., "An Open Graph
Visualization System and Its Applications," Software
- Practice and Experience, Vol. 00, No. S1, 1999.

 5. Harmelen, F. and McGuiness, D., "OWL Web
Ontology Language Overview," W3C web site:
http://www.w3.org/TR/2004/REC-owl-features-
20040210/, 2004.

 6. Horrocks, et. al.., "SWRL: A Semantic Web Rule
Language Combining OWL and RuleML: Version
0.5," http://www.daml.org/2003/11/swrl/, 2003.

 7. Schlenoff, C., Washington, R., and Barbera, T.,
"Experiences in Developing an Intelligent Ground
Vehicle (IGV) Ontology in Protégé," The 7th Int.
Protégé Conference, Bethesda, MD, 2004.

 8. The OWL Services Coalition, "OWL-S 1.0 Release,"
http://daml.org/services/owl-s/1.0/owl-s.pdf, 2003.

